359 research outputs found

    Ultra-Low Noise Microwave Extraction from Fiber-Based Optical Frequency Comb

    Full text link
    In this letter, we report on all-optical fiber approach to the generation of ultra-low noise microwave signals. We make use of two erbium fiber mode-locked lasers phase locked to a common ultra-stable laser source to generate an 11.55 GHz signal with an unprecedented relative phase noise of -111 dBc/Hz at 1 Hz from the carrier.The residual frequency instability of the microwave signals derived from the two optical frequency combs is below 2.3 10^(-16) at 1s and about 4 10^(-19) at 6.5 10^(4)s (in 5 Hz bandwidth, three days continuous operation).Comment: 12 pages, 3 figure

    Anomalous proximity effect in gold coated (110) YBa2Cu3O7−ήYBa_2Cu_3O_{7-\delta} films: Penetration of the Andreev bound states

    Full text link
    Scanning tunneling spectroscopy of (110) YBa2Cu3O7−ή/AuYBa_2Cu_3O_{7-\delta}/Au bi-layers reveal a proximity effect markedly different from the conventional one. While proximity-induced mini-gaps rarely appear in the Au layer, the Andreev bound states clearly penetrate into the metal. Zero bias conductance peaks are measured on Au layers thinner than 7 nm with magnitude similar to those detected on the bare superconductor films. The peaks then decay abruptly with Au thickness and disappear above 10 nm. This length is shorter than the normal coherence length and corresponds to the (ballistic) mean free path.Comment: 5 prl format pages, 4 figures, to be published in PR

    Ultra-low phase noise all-optical microwave generation setup based on commercial devices

    Full text link
    In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise L(f)=−104 dBc/Hz\mathcal{L}(f)=-104 \ \mathrm{dBc}/\mathrm{Hz} at 1 Hz Fourier frequency, at the level of the best value obtained with such "microwave photonics" laboratory experiments \cite{Fortier2011}. Close-to-the-carrier ultra-low phase noise microwave signals will now be available in laboratories outside the frequency metrology field, opening up new possibilities in various domains.Comment: 8 pages, 3 figures. To be published in Applied Optics, early posting version available at http://www.opticsinfobase.org/ao/upcoming_pdf.cfm?id=23114

    An Ultra-Stable Referenced Interrogation System in the Deep Ultraviolet for a Mercury Optical Lattice Clock

    Full text link
    We have developed an ultra-stable source in the deep ultraviolet, suitable to fulfill the interrogation requirements of a future fully-operational lattice clock based on neutral mercury. At the core of the system is a Fabry-P\'erot cavity which is highly impervious to temperature and vibrational perturbations. The mirror substrate is made of fused silica in order to exploit the comparatively low thermal noise limits associated with this material. By stabilizing the frequency of a 1062.6 nm Yb-doped fiber laser to the cavity, and including an additional link to LNE-SYRTE's fountain primary frequency standards via an optical frequency comb, we produce a signal which is both stable at the 1E-15 level in fractional terms and referenced to primary frequency standards. The signal is subsequently amplified and frequency-doubled twice to produce several milliwatts of interrogation signal at 265.6 nm in the deep ultraviolet.Comment: 7 pages, 6 figure

    Scanning tunneling spectroscopy characterization of the pseudogap and the x = 1/8 anomaly in La2-xSrxCuO4 thin films

    Full text link
    Using scanning tunneling spectroscopy we examined the local density of states of thin c-axis La2-xSrxCuO4 films, over wide doping and temperature ranges. We found that the pseudogap exists only at doping levels lower than optimal. For x = 0.12, close to the 'anomalous' x = 1/8 doping level, a zero bias conductance peak was the dominant spectral feature, instead of the excepted V- shaped (c-axis tunneling) gap structure. We have established that this surprising effect cannot be explained by tunneling into (110) facets. Possible origins for this unique behavior are discussed.Comment: 15 pages, 6 figure

    Correlation between Ferromagnetic Layer Easy Axis and the Tilt Angle of Self Assembled Chiral Molecules

    Get PDF
    The spin-spin interactions between chiral molecules and ferromagnetic metals were found to be strongly affected by the chiral induced spin selectivity effect. Previous works unraveled two complementary phenomena: magnetization reorientation of ferromagnetic thin film upon adsorption of chiral molecules and different interaction rate of opposite enantiomers with a magnetic substrate. These phenomena were all observed when the easy axis of the ferromagnet was out of plane. In this work, the effects of the ferromagnetic easy axis direction, on both the chiral molecular monolayer tilt angle and the magnetization reorientation of the magnetic substrate, are studied using magnetic force microscopy. We have also studied the effect of an applied external magnetic field during the adsorption process. Our results show a clear correlation between the ferromagnetic layer easy axis direction and the tilt angle of the bonded molecules. This tilt angle was found to be larger for an in plane easy axis as compared to an out of plane easy axis. Adsorption under external magnetic field shows that magnetization reorientation occurs also after the adsorption event. These findings show that the interaction between chiral molecules and ferromagnetic layers stabilizes the magnetic reorientation, even after the adsorption, and strongly depends on the anisotropy of the magnetic substrate. This unique behavior is important for developing enantiomer separation techniques using magnetic substrates

    Ultrastable lasers based on vibration insensitive cavities

    Full text link
    We present two ultra-stable lasers based on two vibration insensitive cavity designs, one with vertical optical axis geometry, the other horizontal. Ultra-stable cavities are constructed with fused silica mirror substrates, shown to decrease the thermal noise limit, in order to improve the frequency stability over previous designs. Vibration sensitivity components measured are equal to or better than 1.5e-11 per m.s^-2 for each spatial direction, which shows significant improvement over previous studies. We have tested the very low dependence on the position of the cavity support points, in order to establish that our designs eliminate the need for fine tuning to achieve extremely low vibration sensitivity. Relative frequency measurements show that at least one of the stabilized lasers has a stability better than 5.6e-16 at 1 second, which is the best result obtained for this length of cavity.Comment: 8 pages 12 figure

    Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation

    Full text link
    When a photo-diode is illuminated by a pulse train from a femtosecond laser, it generates microwaves components at the harmonics of the repetition rate within its bandwidth. The phase of these components (relative to the optical pulse train) is known to be dependent on the optical energy per pulse. We present an experimental study of this dependence in InGaAs pin photo-diodes illuminated with ultra-short pulses generated by an Erbium-doped fiber based femtosecond laser. The energy to phase dependence is measured over a large range of impinging pulse energies near and above saturation for two typical detectors, commonly used in optical frequency metrology with femtosecond laser based optical frequency combs. When scanning the optical pulse energy, the coefficient which relates phase variations to energy variations is found to alternate between positive and negative values, with many (for high harmonics of the repetition rate) vanishing points. By operating the system near one of these vanishing points, the typical amplitude noise level of commercial-core fiber-based femtosecond lasers is sufficiently low to generate state-of-the-art ultra-low phase noise microwave signals, virtually immune to amplitude to phase conversion related noise.Comment: 7 pages, 6 figures, submitted to Applied Physics
    • 

    corecore